The use of artificial neural networks in decision support in cancer: A systematic review

نویسندگان

  • Paulo J. G. Lisboa
  • Azzam Fouad George Taktak
چکیده

Artificial neural networks have featured in a wide range of medical journals, often with promising results. This paper reports on a systematic review that was conducted to assess the benefit of artificial neural networks (ANNs) as decision making tools in the field of cancer. The number of clinical trials (CTs) and randomised controlled trials (RCTs) involving the use of ANNs in diagnosis and prognosis increased from 1 to 38 in the last decade. However, out of 396 studies involving the use of ANNs in cancer, only 27 were either CTs or RCTs. Out of these trials, 21 showed an increase in benefit to healthcare provision and 6 did not. None of these studies however showed a decrease in benefit. This paper reviews the clinical fields where neural network methods figure most prominently, the main algorithms featured, methodologies for model selection and the need for rigorous evaluation of results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Yarn tenacity modeling using artificial neural networks and development of a decision support system based on genetic algorithms

Yarn tenacity is one of the most important properties in yarn production. This paper addresses modeling of yarn tenacity as well as optimally determining the amounts of the effective inputs to produce yarn with desired tenacity. The artificial neural network is used as a suitable structure for tenacity modeling of cotton yarn with 30 Ne. As the first step for modeling, the empirical data is col...

متن کامل

An artificial intelligence model based on LS-SVM for third-party logistics provider ‎selection

The use of third-party logistics (3PL) providers is regarded as new strategy in logistics management. The relationships by considering 3PL are sometimes more complicated than any classical logistics supplier relationships. These relationships have taken into account as a well-known way to highlight organizations' flexibilities to regard rapidly uncertain market conditions, follow core competenc...

متن کامل

ESTIMATING THE VULNERABILITY OF THE CONCRETE MOMENT RESISTING FRAME STRUCTURES USING ARTIFICIAL NEURAL NETWORKS

Heavy economic losses and human casualties caused by destructive earthquakes around the world clearly show the need for a systematic approach for large scale damage detection of various types of existing structures. That could provide the proper means for the decision makers for any rehabilitation plans. The aim of this study is to present an innovative method for investigating the seismic vuln...

متن کامل

The Use of Artificial Intelligence and Decision Support Systems in Clinical Diagnosis: a Systematic Review

In this paper, a systematic review was conducted to assess the benefit of Artificial Intelligence (AI) algorithms as diagnostic tools, the majority of which involved the use of Artificial Neural Networks (ANN). The number of clinical trials involving the use of ANN in diagnosis increased from 1 to 38 in the last decade. However, the proportion of clinical trials in all studies published using A...

متن کامل

Prediction of true critical temperature and pressure of binary hydrocarbon mixtures: A Comparison between the artificial neural networks and the support vector machine

Two main objectives have been considered in this paper: providing a good model to predict the critical temperature and pressure of binary hydrocarbon mixtures, and comparing the efficiency of the artificial neural network algorithms and the support vector regression as two commonly used soft computing methods. In order to have a fair comparison and to achieve the highest efficiency, a comprehen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neural networks : the official journal of the International Neural Network Society

دوره 19 4  شماره 

صفحات  -

تاریخ انتشار 2006